Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Surg ; 227: 90-95, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37845110

RESUMO

BACKGROUND: Two-thirds of surgeons report work-related musculoskeletal disorders (WRMD). There is limited data on WRMD symptoms experienced by pregnant surgeons. METHODS: We distributed an electronic survey via personal contacts to attending and trainee surgeons across six academic institutions to assess the impact of procedural activities and surgical ergonomics (SE) on WRMD symptoms during pregnancy. RESULTS: Fifty-three respondents were currently or had been pregnant while clinically active, representing 93 total pregnancies. 94.7% reported that symptoms were exacerbated by workplace activities during pregnancy and 13.2% took unplanned time off work as a result. Beyond 24 weeks of pregnancy, 89.2% of respondents continued to operate/perform procedures, 81.7% worked >24-h shifts and 69.9% performed repetitive lifting >50 pounds. No respondents were aware of any institutional pregnancy-specific SE policies. CONCLUSIONS: Procedural activities can exacerbate pain symptoms for the pregnant surgeon. SE best practices during pregnancy warrant further attention.


Assuntos
Dor Musculoesquelética , Doenças Profissionais , Cirurgiões , Humanos , Gravidez , Feminino , Dor Musculoesquelética/epidemiologia , Dor Musculoesquelética/etiologia , Doenças Profissionais/epidemiologia , Doenças Profissionais/etiologia , Doenças Profissionais/prevenção & controle , Inquéritos e Questionários , Ergonomia
2.
J Extracell Biol ; 2(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38264628

RESUMO

Mouse models of breast cancer have revealed that tumor-bearing hosts must express the oxidoreductase CLIC4 to develop lung metastases. In the absence of host CLIC4, primary tumors grow but the lung premetastatic niche is defective for metastatic seeding. Primary breast cancer cells release EVs that incorporate CLIC4 as cargo and circulate in plasma of wildtype tumor-bearing hosts. CLIC4-deficient breast cancer cells also form tumors in wildtype hosts and release EVs in plasma, but these EVs lack CLIC4, suggesting that the tumor is the source of the plasma-derived EVs that carry CLIC4 as cargo. Paradoxically, circulating EVs are also devoid of CLIC4 when CLIC4-expressing primary tumors are grown in CLIC4 knockout hosts. Thus, the incorporation of CLIC4 (and perhaps other factors) as EV cargo released from tumors involves specific signals from the surrounding stroma determined by its genetic composition. Since CLIC4 is also detected in circulating EVs from human breast cancer patients, future studies will address its association with disease.

3.
PLoS Genet ; 18(6): e1010271, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727842

RESUMO

The TGF-ß-regulated Chloride Intracellular Channel 4 (CLIC4) is an essential participant in the formation of breast cancer stroma. Here, we used data available from the TCGA and METABRIC datasets to show that CLIC4 expression was higher in breast cancers from younger women and those with early-stage metastatic disease. Elevated CLIC4 predicted poor outcome in breast cancer patients and was linked to the TGF-ß pathway. However, these associations did not reveal the underlying biological contribution of CLIC4 to breast cancer progression. Constitutive ablation of host Clic4 in two murine metastatic breast cancer models nearly eliminated lung metastases without reducing primary tumor weight, while tumor cells ablated of Clic4 retained metastatic capability in wildtype hosts. Thus, CLIC4 was required for host metastatic competence. Pre- and post-metastatic proteomic analysis identified circulating pro-metastatic soluble factors that differed in tumor-bearing CLIC4-deficient and wildtype hosts. Vascular abnormalities and necrosis increased in primary tumors from CLIC4-deficient hosts. Transcriptional profiles of both primary tumors and pre-metastatic lungs of tumor-bearing CLIC4-deficient hosts were consistent with a microenvironment where inflammatory pathways were elevated. Altogether, CLIC4 expression in human breast cancers may serve as a prognostic biomarker; therapeutic targeting of CLIC4 could reduce primary tumor viability and host metastatic competence.


Assuntos
Neoplasias da Mama , Canais de Cloreto , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Canais de Cloreto/biossíntese , Canais de Cloreto/genética , Feminino , Humanos , Camundongos , Metástase Neoplásica , Proteômica , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
4.
Proc Natl Acad Sci U S A ; 114(37): 9900-9905, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847931

RESUMO

Oncogenic Ras causes proliferation followed by premature senescence in primary cells, an initial barrier to tumor development. The role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in regulating these two cellular outcomes is poorly understood. During ER stress, the inositol requiring enzyme 1α (IRE1α) endoribonuclease (RNase), a key mediator of the UPR, cleaves Xbp1 mRNA to generate a potent transcription factor adaptive toward ER stress. However, IRE1α also promotes cleavage and degradation of ER-localized mRNAs essential for cell death. Here, we show that oncogenic HRas induces ER stress and activation of IRE1α. Reduction of ER stress or Xbp1 splicing using pharmacological, genetic, and RNAi approaches demonstrates that this adaptive response is critical for HRas-induced proliferation. Paradoxically, reduced ER stress or Xbp1 splicing promotes growth arrest and premature senescence through hyperactivation of the IRE1α RNase. Microarray analysis of IRE1α- and XBP1-depleted cells, validation using RNA cleavage assays, and 5' RACE identified the prooncogenic basic helix-loop-helix transcription factor ID1 as an IRE1α RNase target. Further, we demonstrate that Id1 degradation by IRE1α is essential for HRas-induced premature senescence. Together, our studies point to IRE1α as an important node for posttranscriptional regulation of the early Ras phenotype that is dependent on both oncogenic signaling as well as stress signals imparted by the tumor microenvironment and could be an important mechanism driving escape from Ras-induced senescence.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleases/metabolismo , Proteínas ras/genética , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Inositol/metabolismo , Queratinócitos/citologia , Queratinócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonucleases/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA